This article was downloaded by: On: 22 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Asian Natural Products Research

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713454007

New taxanes from the seeds of Taxus mairei

Q. -W. Shi^a; Z. -P. Li^a; C. -L. Wang^a; M. -L. Zhang^a; N. Choony^b; H. Kiyota^c ^a Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Hebei Medicinal University, Shijiazhuang, China ^b Department of Chemistry, Mount Marty College, Yankton, SD, USA ^c Laboratory of Applied Bioorganic Chemistry, Division of Life Science, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan

To cite this Article Shi, Q. -W., Li, Z. -P., Wang, C. -L., Zhang, M. -L., Choony, N. and Kiyota, H.(2006) 'New taxanes from the seeds of *Taxus mairei*', Journal of Asian Natural Products Research, 8: 5, 431 – 437 To link to this Article: DOI: 10.1080/10286020500172848 URL: http://dx.doi.org/10.1080/10286020500172848

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doese should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Journal of Asian Natural Products Research, Vol. 8, No. 5, July-August 2006, 431-437

New taxanes from the seeds of Taxus mairei

Taylor & Francis

(*=

Q.-W. SHI†*, Z.-P. LI†, C.-L. WANG†, M.-L. ZHANG†, N. CHOONY‡ and H. KIYOTA¶

 [†]Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Hebei Medicinal University, 336 Zhongshan East Road, 050017 Shijiazhuang, China
 [‡]Department of Chemistry, Mount Marty College, 1105W, 8th Street, Yankton, SD SD 57078, USA

¶Laboratory of Applied Bioorganic Chemistry, Division of Life Science, Graduate School of Agricultural Sciences, Tohoku University, 1-1 Tsutsumidori-Amamiya, Aoba-ku, Sendai 981-8555, Japan

(Received 8 November 2004; revised 25 January 2005; in final form 20 May 2005)

Two new taxoid metabolites were isolated from the methanol extract of the *Taxus mairei* seeds. Their structures were established as 2α -hydroxy- 9α , 10β , 13α -triacetoxy- 5α -cinnamoyloxytaxa-11-en- 4β ,20-epoxide (1) and 2'-acetyl taxol (2) on the basis of spectral analysis.

Keywords: Taxus mairei; Yew; Taxaceae; Taxanes; Taxol analogue; 2'-Acetyl taxol

1. Introduction

Yew trees of genus *Taxus* (Taxaceae) are dioecious and evergreen plants mainly distributed in the northern hemisphere. Since Taxol® (paclitaxel) was isolated from the bark of *Taxus brevifolia* in 1971 [1], more than 300 natural taxanes have been reported from *Taxus* spp. [2–5], but there are still new taxanes awaiting isolation and structural elucidation [6]. The isolation of new taxanes might provide important clues for the biosynthesis of paclitaxel. *Taxus mairei*, a tall tree ubiquitous to the southeast region of China, is the first yew that was chemical studied in China [7–10]. In our continuous search for new taxoids [11–13], we re-examined the seeds of this plant and this resulted in the isolation of two new taxane analogues. In this communication, we report the isolation and structural elucidation of these two new taxane analogues (1 and 2) (figure 1).

2. Results and discussion

Compound 1 was isolated as white powder from the methanol extract of *T. mairei* seeds. The molecular formula of 1, $C_{35}H_{44}O_{10}$, was established from combined analysis of

^{*}Corresponding author. Tel.: +86-311-626-5634. Fax: +86-311-6048177. E-mail: qing_wen@hotmail.com

Q.-W. Shi et al.

high-resolution FAB-MS at m/z 663.2574 [M + K]⁺ and ¹³C NMR spectrum. The ¹H NMR spectrum of **1** (table 1) disclosed well-dispersed signals including three-proton signals due to the four methyl groups at $\delta_{\rm H}$ 1.06, 1.11, 1.65 and 2.34; two signals at $\delta_{\rm H}$ 1.11 and 1.65 were COSY-correlated peaks as geminal methyls. Three acetyl groups were observed at relatively

Table 1. ¹H- and ¹³C NMR data of 1 (500 MHz for ¹H, 125 MHz for ¹³C, CDCl₃).

Position	$\delta({}^{l}H)$ mult ^a	J(Hz)	$\delta ({}^{I3}C)^b$	НМВС	NOESY ^c
1	1.96 m		50.9		2 ^s , 14a., 16 ^m , 17 ^m
2	4.07 br.dd	10.8, 4.8	72.6		1 ^s , 3 ^w , 9 ^s , 17 ^s , 19 ^s , 2-OH ^w
2-OH	4.28 d	10.8			2 ^m , 20a ^w
3	3.08 d	4.8	37.8	1, 2, 8, 19, 20	2 ^w , 7b ^s , 10 ^w , 14b ^s 18 ^m
4	_		63.1		
5	4.49 br.t	2.5	77.7		6a ^m , 6b/7a ^m , 20b ^s
6a	1.96 m		25.5		
6b	1.85 m				
7a	1.85 m		26.0		3 ^m , 10 ^s , 18 ^m
7b	1.79 m				
8	-		44.2		
9	5.81 d	10.6	76.0	7, 8, 10, 19, CO-9-OAc	2 ^s , 17 ^s , 19 ^w
10	6.02 d	10.6	71.8	9, 11, 12, 15, CO-10-OAc	3 ^w , 7b ^s , 18 ^s
11	-		134.4		
12	-		136.9		
13	5.85 br.dd	9.6, 7.6	70.5	CO-13-OAc	14a, ^s 16, ^s 18 ^w
14a	2.77 dt	15.8, 9.6	28.4	2, 12, 13, 15	1 ^s , 13 ^s , 14b ^s , 16 ^m
14b	1.44 dd	15.8, 7.6		2, 13	3 ^s , 14a ^s
15	_		37.5		
16	1.11 s		31.6	1, 11, 15, Me-17	1 ^s , 13 ^s , 14a ^w , 17 ^s
17	1.65 s		26.4	1, 11, 15, Me-16	1 ^s , 2 ^s , 9 ^s , 16 ^s
18	2.34 s		15.6	11, 12, 13	3 ^m , 7b ^m , 10 ^s , 13 ^w , 2 ^{/s} , Ph- <i>o</i> ^w
19	1.06 s		17.8	3, 7, 8, 9	2 ^s , 9 ^s , 6/7 ^s , 20a ^m , 20b ^m
20a	3.66 d	4.5	53.3	4, 5	2 ^w , 19 ^m , 20b ^s , 2-OH ^w
20b	2.68 d	4.5		4, 5	5 ^s , 19 ^m , 20a ^s
9-OAc	2.07 s		20.7	CO-9-OAc	
			170.3		
10-OAc	2.01 s		20.9	CO-10-OAc	
			169.7		
13-OAc	1.88 s		20.9		
			170.8	CO-13-OAc	
Cinn-1'	-		166.3		
2'	6.76 d	15.9	118.0	Ph-q	Ph-o ^w , 18 ^m , 13-OAc ^m
3'	7.80 d	15.9	146.2	Ph- <i>o</i> , 1′	
Ph-q			134.1		
Ph-o	7.50 m		127.9		
Ph-m	7.42 m		128.9		2 ^s , 3 ^s , 18 ^w , 13-OAc ^w
Ph-p	7.42 m		130.8		

^a Mutiplicity: *s*, singlet; *d*, doublet; *dd*, doublet of doublets; *m*, mutiplet. ^b The ¹³C chemical shifts were extracted from the HMQC experiment (± 0.2 ppm). The values in bold represent quaternary carbons whose chemical shifts were obtained from the HMBC experiment (± 0.2 ppm). ^c NOESY intensities are marked as strong (s), medium (m), or weak (w).

New taxanes from Taxus mairei

lower field ($\delta_{\rm H}$ 1.88, 2.01 and 2.07) and confirmed by corresponding ¹³C NMR signals at $\delta_{\rm C}$ 20.9, 170.8, 20.9, 169.7 and $\delta_{\rm C}$ 20.7, 170.3. The proton signals due to the cinnamoyl group were observed at $\delta_{\rm H}$ 7.50 (2H, m), 7.42 (3H, m) and an AB system centred at $\delta_{\rm H}$ 6.76 (1H, d, J = 15.9 Hz) and 7.80 (1H, d, J = 15.9 Hz) indicating the (E)-geometry of a trans-orientation. This was further confirmed by UV absorption at 278 nm, which we used in the HPLC analysis. The upfield signals appeared as an AB spin system at $\delta_{\rm H}$ 2.68 (1H, d, J = 4.5 Hz) and $\delta_{\rm H}$ 3.66 (1H, d, J = 4.5 Hz) are indicative of a geminal methylene group on the epoxide ring of baccatin I type taxane [3,14], whereas the large chemical shift difference ($\Delta \delta 0.98$) between the geminal oxirane protons is in accordance with a β -oritentation for the epoxide oxygen [17,18]. The connectivities of the protons of 1 were determined by analysis of the ¹H-¹H COSY spectrum. Interpretation of ¹H NMR, ¹³C NMR and HMBC spectral data permitted the positional assignment of functional groups. The characteristic signal at $\delta_{\rm H}$ 3.08 (1H, d, J = 4.8 Hz), which correlated with C-1, C-2, C-8, C-19 and C-20 in the HMBC experiment, was attributed to H-3 in a taxane analogue [2,3]. Using H-3 as the starting point, the signals of H-1, H-2, H-14 and H-13 were confirmed from the ¹H-¹H COSY spectrum. The chemical shift of H-2 at $\delta_{\rm H}$ 4.07 (1H, *br.dd*, J = 10.8, 4.8 Hz) suggested that a free hydroxyl group was located at C-2; this was further confirmed by its correlation with a hydroxyl group at $\delta_{\rm H}$ 4.28 (1H, d, J = 10.8 Hz), whereas the chemical shift of H-13 at $\delta_{\rm H}$ 5.85 (1H, dd, J = 9.4, 7.6 Hz) indicated that an acetyl group was attached to C-13. In the HMBC spectrum of 1, H-14a and H-14b showed long-range correlations with C-2, C-12, C-13 and C-15, and Me-18 exhibited cross-peaks with C-11, C-12 and C-13. The cross-peaks of Me-16 and Me-17 to C-1, C-11 and C-15 indicated that Me-16 and Me-17 were attached at C-15. These correlations suggested the presence of a cyclohexane moiety (ring A) in 1. The cross-peaks of H-3 to C-1, C-2, C-8, C-19, H-9 to C-8, C-10, C-19, and H-10 to C-9, C-11, C-12 and C-15 implied the presence of an eight-membered ring (ring B). The cross-peaks of H-3 to C-8, C-19, C-20, H-19 to C-3, C-7, C-8 and H-20 to C-4 and C-5 suggested that another cyclohexane moiety (ring C), i.e. compound 1 was a taxane with a 6/8/6-membered-ring skeleton [15]. In the ¹H NMR spectrum of 1, a pair of isolated AB systems resonating at $\delta_{\rm H}$ 5.81, and 6.02 with a coupling constant (J = 10.6 Hz) were attributed to H-9 and H-10, and two acetoxyl groups were attached to C-9 and C-10, respectively. These assignments were further confirmed by HMBC experiment. Trans-orientation of H-9 and H-10 was suggested by the large vicinal coupling constant [2,3]. The signal at $\delta_{\rm H}$ 4.49 (1H, br.t, J = 2.5 Hz) was assigned to H-5 due to ${}^{1}{\rm H} - {}^{1}{\rm H}$ COSY of H-5 and H-6, H-7. The cinnamoyl group was suggested at C-5 by the chemical shift of H-5 and observed NOE correlations between H-2' and Me-18 and 13-OAc. The unusual high field chemical shift of H-5 due to the magnetic anisotropy of the oxirane ring at C-4 and C-20 further confirmed that the epoxidic oxygen was β -oriented and *cis* to H-5, the shielding effect on H-5 being in good agreement with the observed chemical shift [16,17]. Actually, all naturally occurring 4,20-epoxide taxanes have been formulated as β -epoxides [4,5]. Unnatural occurring 4,20-epoxide taxanes can be formulated as α -epoxide with relatively smaller chemical shift difference between H-20a and H-20b [18]. Thus, the structure of 1 was rigorously characterized as 2α -hydroxy- 9α , 10β , 13α -triacetoxy- 5α -cinnamoyloxytaxa-11en-4 β ,20-epoxide. This is the fifth 4,20-epoxide taxane with a cinnamoyl group at C-5 reported so far [19,20]. The relative stereochemistry of 1 was elucidated from analysis of the NOESY experiment, chemical shifts and their coupling constants. The coupling constant between H-9 and H-10 (J = 10 Hz) and observed NOESY correlations of H-2/H-19, H-2/H-17, H-9/H-19 established a boat-chair conformation for ring B, which is a typical taxane

433

Q.-W. Shi et al.

Figure 2. HMBC, ¹H-¹H COSY (left) and NOESY (right) correlations of 1.

conformation [2,3]. The β -orientation of H-2 and H-9 were assigned by NOESY correlations of H-2/H-17, H-19/H-2, and H-9/H-19. The α -orientation of H-10 was applied by the observation of NOESY correlations of H-10/H-18 and H-10/H-7b. H-5 adopted an expected β -orientation judging from observed NOE correlation between Me-18 and H-2' in the NOESY spectrum (figure 2).

Compound 2, amorphous white powder, exhibited a HR-FAB-MS spectral quasimolecular ion peak at m/z 934.3051 [M + K]⁺, corresponding to the molecular formula of C₄₉H₅₃NO₁₅. Complete assignments of ¹H- and ¹³C NMR signals were achieved (table 2) with the help of various NMR techniques such as ¹H-¹H COSY, HMQC for direct H-C connectivities and HMBC for long-range H-C correlation. The ¹H NMR spectrum of **2** showed the characteristic signals of four tertiary methyl groups at $\delta_{\rm H}$ 1.13, 1.23, 1.67 and 1.93 (each 3H, s), three acetyl groups at $\delta_{\rm H}$ 2.15, 2.22 and 2.44 (each 3H, s), one benzoyl group at $\delta_{\rm H}$ 7.51, 7.60 and 8.13 as well as one oxetane ring at $\delta_{\rm H}$ 4.19 and 4.31 mutually coupled with a coupling constant J = 8.6 Hz. In addition, the ¹H NMR spectrum of 2 displayed the featured signals of taxol such as H-2 at $\delta_{\rm H}$ 5.68 $(1H, d, J = 7.2 \text{ Hz}), H-3 \text{ at } \delta_H 3.82 (1H, d, J = 7.2 \text{ Hz}), H-5 \text{ at } \delta_H 4.97 (1H, br.d, J = 7.6 \text{ Hz}), H-3 \text{ at } \delta_H 3.82 (1H, d, J = 7.2 \text{ Hz}), H-5 \text{ at } \delta_H 4.97 (1H, br.d, J = 7.6 \text{ Hz}), H-5 \text{ at } \delta_H 3.82 (1H, d, J = 7.2 \text{ Hz}), H-5 \text{ at } \delta_H 3.82 (1H, d, J = 7.$ 7 at $\delta_{\rm H}$ 4.44 (1H, dd, J = 11.2, 6.4 Hz), H-10 at $\delta_{\rm H}$ 6.29 (1H, s), and H-13 at $\delta_{\rm H}$ 6.25 (1H, br.t, J = 7.2 Hz). The presence of a side chain similar to the C-13 side chain of taxol was suggested by the signals at $\delta_{\rm H}$ 5.50 (1H, d, J = 3.2 Hz, H-2'), 5.94 (1H, dd, J = 9.2, 3.2 Hz, H-3'), 6.86 (1H, d, J = 0.2, 3.2 Hz, H-3'), 6.86 (1H, 2H, 3.2), 6.86 (1H, 2H, 3.2), 7.86 (1H, 3.2), 7.86 (1H J = 9.2 Hz, H-4'), 7.33–7.42 (5H, m, 3'-Ph), and N-benzoyl signals at $\delta_{\rm H}$ 7.73, 7.41, and 7.49. Comparing the spectral data of 2 with those of taxol revealed that H-2' of 2 was shifted downfield to $\delta_{\rm H}$ 5.50 and it showed a long-range H–C correlation with one carbonyl carbon at $\delta_{\rm C}$ 169.6, indicating that an acetoxyl group for 2 was instead of the hydroxyl in taxol. This result was in good agreement with the molecular weight of **2**. The configurations at H-2' and H-3' were concluded to be 2'R, 3'S by the proton vicinal coupling constants compared with taxol $(J_{2',3'} = 2.7 \text{ Hz}, J_{3',4'} = 8.9 \text{ Hz})$ [21]. This conclusion was also verified by lack of an NOE correlation between H-3' and Me-18 [22]. The relative stereochemistry at C-2, C-7, C-10 and C-13 were established on the basis of chemical shifts, splitting patterns and coupling constants values of corresponding protons as well as by comparing with those of taxol. Taking all these spectral data into account, the structure of 2 was elucidated unequivocally as 2'-acetyl taxol.

3. Experimental

3.1 General experimental procedures

Optical rotation values were recorded on a Jasco DIP-370 digital polarimeter. All the NMR data were obtained at room temperature on a Bruker Avance-500 spectrometer. Positive ion

New taxanes from Taxus mairei

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Position	$\delta(^{1}H)$ mult ^a	J (Hz)	$\delta ({}^{13}C)^{b}$	НМВС	NOESY ^c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	_		79.2		
3 3.82 d 7.2 45.4 1, 2, 8, 19, 20 2 ^w , 7, 10 ^m , 14 ^a , 18 ^w 4 - 81.0 6a ^s 2 ^w , 7, 10 ^m , 14 ^a , 18 ^w 5 4.97 br.d 7.6 84.3 6a ^s 6a 2.56 dbd 14.6, 11.2, 2.1 6a ^s 6a ^s 7 4.44 dd 11.2, 6.4 72.0 9 3 ^s , 6a ^s , 10 ^s , 18 ^w 8 - - 203.6 - 10 ^s 6a ^s , 10 ^s , 18 ^w 9 - 203.6 - 11 ^s - 13 ^s 6a ^s , 10 ^s , 18 ^w 9 - 203.6 9 3 ^s , 6a ^s , 10 ^s , 18 ^w - - 14 ^s 11 ^s - - 14 ^s 11 ^s - - - 14 ^s - - - 14 ^s - - - 14 ^s - - <t< td=""><td>2</td><td>568d</td><td>72</td><td>74.9</td><td>1 3 8 14 CO-OBz</td><td>3^{w} 17^s 19^s 20b^w</td></t<>	2	568d	72	74.9	1 3 8 14 CO-OBz	3^{w} 17 ^s 19 ^s 20b ^w
4 12 11 12 12 12 12 12 11 12 11 12 112 112 112 112 112 112 112 112 112 112 112 112 112 112	3	3.82 d	7.2	45.4	1 2 8 19 20	2^{w} 7^{s} 10^{m} $14a^{\text{s}}$ 18^{m}
5 4.97 br.d 7.6 84.3 6a ³ 6a ³ 6a 2.56 ddd 14.6, 9.4, 6.4 35.4 7.8 5 ⁷ , 65, 7 ^w 7 4.44 dd 11.2, 6.4 72.0 9 3 ⁵ , 65, 7 ^w 8 - 58.4 - 203.6 - 10 9 - 203.6 - 10 6.29 s 7.5.4 9, 11, 12, 15, 171.1 3 ^m , 7 ^s , 18 ^s 10 6.29 s 75.4 9, 11, 12, 15, 171.1 3 ^m , 7 ^s , 18 ^s - 11 - 132.6 - 142.8 - - 142.8 13 6.25 br.t ~7.2 71.7 14b ^m , 16 ⁵ - -	4		7.2	81.0	1, 2, 0, 19, 20	2,,,,10,,114,10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	197 hrd	7.6	84.3		63 ⁸
Gath 2.50 min 14.6, 5.4, 6.4 15.4 1.6 5.4, 6.4 12.6 6b 1.88 did 14.6, 11.2, 2.1 64, 19 ^m 64, 19 ^m 7 4.44 dd 11.2, 2.1 64, 19 ^m 64, 19 ^m 8 - 203.6 75.4 9, 11, 12, 15, 171.1 3 ^m , 7 ⁴ , 18 ^s 10 6.29 s 75.4 9, 11, 12, 15, 171.1 3 ^m , 7 ⁴ , 18 ^s 11 - 132.6 14.2.8 14.6 14.1 12 - 142.8 13 13 ^s , 14 ^b 14.1 14a 2.36 dd 15.5, 9.4 3.5 1, 2, 13 3 ^m , 7 ^s , 16 ^s 15 - 43.2 1, 12, 13 13 ^s , 14 ^s , 16 ^w 15 16 1.23 s 26.7 1, 11, 15, Me-17 13 ^s , 17 ^s 17 ^s 18 193 s 14.6 14, 12, 13 3 ^m , 7 ^w , 10 ^s 19 ^s 20b 4.19 d 8.6 76.3 3, 4 20 ^s 20b 1.19 d 8.6 7.7 130.1 Bz-o, p, CO-OBz Bz-m ^s , 20a ^w 2 ¹ OAC <	69	2.56 ddd	146 94 64	35.4	78	5^{s} $6b^{\text{s}}$ 7^{w}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6h	1.88 ddd	14.6, 11.2, 2.1	55.4	7, 0	5,00,7
i i	7	1.00 uuu 1.00 dd	14.0, 11.2, 2.1 11.2, 6.4	72.0	0	$3^{8} 6 3^{8} 10^{8} 18^{W}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	4.44 uu	11.2, 0.4	58.4	3	5,00,10,18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	-		203.6		
10 0.23 s 13.4 9, 11, 12, 13, 17, 11 3, 7, 16 11 - 132.6 142.8 144 13 6.25 brt \sim 7.2 71.7 14b ^m , 16 ^s 14a 2.36 dd 15.5, 9.4 35.5 1, 2, 13 3 ^m , 14b ^s 14b 2.17 m 13 ^s , 14 ^s 1, 12, 13 13 ^s , 14 ^s 15 - 43.2 - - 16 1.23 s 20.7 1, 11, 15, Me-16 2 ^s , 17 ^s , 20s ^s 19 1.67 s 9.5 3, 7, 8, 9 2 ^s , 17 ^s , 20s ^s 20a 4.31 d 8.6 76.3 3, 4 20b ^s 20b 4.19 d 8.6 3, 4, 5 2 ^w , 19 ^m , 20a ^s 20-AC 2.44 s 22.6 CO-4-OAc 160.5 10-OAc 2.22 s 20.7 CO-10-OAc 171.1 2'-OAc 2.15 s 20.4 CO-2'-OAc 166.8 16 17.1 135.5 17 130.1 Bz-o, p, CO-OBz Bz-m ^s , 20a ^w 17 126.8 7.60 t 7.4 133.5	9	- 6 20 s		203.0	0 11 12 15 171 1	2 ^m 7 ^s 19 ^s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	0.29 8		122.6	9, 11, 12, 13, 171.1	5,7,10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	-		152.0		
15 0.25 pri ~ 7.2 1.1 140 + 16 14a 2.36 dd 15.5, 9.4 35.5 1, 2, 13 3", 14b ⁵ 14b 2.17 m 1, 12, 13 13 [*] , 14b ⁵ 14b 15 - 43.2 1, 11, 15, Me-17 13 [*] , 17 [*] 16 1.23 s 26.7 1, 11, 15, Me-16 2 [*] , 16 [*] , 19 ^m 17 1.13 s 22.0 1, 11, 15, Me-16 2 [*] , 16 [*] , 19 ^m 18 1.93 s 14.6 11, 12, 13 3", 7", 10 [*] 19 1.67 s 9.5 3, 7, 8, 9 2 [*] , 17", 20b [*] 20a 4.31 d 8.6 76.3 3, 4 20b [*] 20b 4.19 d 8.6 3, 4, 5 2 ^w , 19 ^m , 20a [*] 20c 2.22 s 20.7 CO-10-OAc 169.5 10-OAc 2.22 s 20.4 CO-2 [*] -OAc 169.6 2 [*] OAc 2.15 s 20.4 CO-2 [*] -OAc 16 [*] 2 [*] OAc 7.1 t 130.1 Bz-o, p, CO-OBz Bz-m [*] , 20a ^w m 7.51 t 7.7 128.6 2 [*]	12	-	7.0	142.0		14LM 168
14a 2.36 dd 15.5, 9.4 35.5 1, 2, 13 3 ⁵ , 140 ⁶ 14b 2.17 m 1, 12, 13 13 ⁵ , 144 ⁸ , 16 ^w 15 - 43.2 16 1.23 s 26.7 1, 11, 15, Me-17 13 ⁸ , 17 ⁸ 17 1.13 s 22.0 1, 11, 15, Me-16 2 ⁸ , 16 ⁸ , 19 ^m 18 1.93 s 14.6 11, 12, 13 3 ^m , 7 ^w , 10 ⁸ 19 1.67 s 9.5 3, 7, 8, 9 2 ^s , 17 ^w , 20b ⁸ 20a 4.31 d 8.6 76.3 3, 4 20b ⁸ 20b 4.19 d 8.6 3, 4, 5 2 ^w , 19 ^m , 20a ⁸ 20-OAc 2.44 s 22.6 CO-4-OAc 160.5 171.1 2 -OAc 169.6 20-OAc 2.15 s 20.4 CO-2'-OAc 169.6 2-OBz	15	0.25 Dr.t	~ 1.2	/1./	1 2 12	14D, 10
14b 2.17 m 1, 12, 15 15, 144, 16° 15 - 43.2 16 1.23 s 26.7 1, 11, 15, Me-16 2 ⁵ , 16 ⁵ , 19 ^m 17 1.13 s 22.0 1, 11, 15, Me-16 2 ⁵ , 16 ⁵ , 19 ^m 18 1.93 s 14.6 11, 12, 13 3 ^m , 7 ^w , 10 ^s 19 1.67 s 9.5 3, 7, 8, 9 2 ^s , 17 ^s , 20b ^s 20a 4.31 d 8.6 76.3 3, 4 20b ^s 20b 4.19 d 8.6 3, 4, 5 2 ^w , 19 ^m , 20a ^s 4-OAc 2.44 s 22.6 CO-4-OAc 169.5 10-OAc 2.22 s 20.7 CO-10-OAc 171.1 2'-OAc 2.15 s 20.4 CO-2'-OAc 169.6 2-OBz 166.8 126.8 7.7 128.6 169.6 0 7.51 t 7.7 128.6 126.8 2 ^s , 4'-NH ^w 2' 5.50 d 3.2 73.8 3', 1', CO-2' -OAc 3 ^{rs} 1' 1 167.8 2 ^{rm} , 3 ^{rm} , 4 ^{rm} 2 ^{rm} , 3 ^{rm} , 4 ^{rm} q	14a	2.36 <i>dd</i>	15.5, 9.4	35.5	1, 2, 13	3 , 140
15 - 43.2 16 1.23 s 26.7 1, 11, 15, Me-17 $13^s, 17^s$ 17 1.13 s 22.0 1, 11, 15, Me-16 $2^s, 16^s, 19^m$ 18 1.93 s 14.6 11, 12, 13 $3^m, 7^w, 10^s$ 19 1.67 s 9.5 3, 7, 8, 9 $2^s, 17^w, 20b^s$ 20a 4.31 d 8.6 76.3 3, 4 20b^s 20b 4.19 d 8.6 76.3 3, 4 20b^s 20b 4.19 d 8.6 76.3 3, 4 20b^s 20b 4.19 d 8.6 76.3 3, 4 20b^s 10-OAc 2.24 s 20.7 CO-10-OAc 169.5 10-OAc 2.15 s 20.4 CO-2'-OAc 169.6 2-OBz 166.8 126.8 126.8 126.8 126.8 q 7.51 t 7.7 128.6 126.4 12''''''''''''''''''''''''''''''''''''	140	2.17 m		12.2	1, 12, 13	13°, 14a°, 16°
16 $1.23 s$ 26.7 $1, 11, 15, Me-17$ $15, 17^{-}$ 17 $1.13 s$ 22.0 $1, 11, 15, Me-16$ $2^{5}, 16^{5}, 19^{m}$ 18 $1.93 s$ 14.6 $11, 12, 13$ $3^{m}, 7^{w}, 10^{5}$ 19 $1.67 s$ 9.5 $3, 7, 8, 9$ $2^{5}, 17^{w}, 20b^{8}$ 20a $4.31 d$ 8.6 76.3 $3, 4$ $20b^{5}$ 20b $4.19 d$ 8.6 $3, 4, 5$ $2^{w}, 19^{m}, 20a^{8}$ $20b$ $4.19 d$ 8.6 22.6 $CO-4-OAc$ $4-OAc$ $2.44 s$ 22.6 $CO-4-OAc$ $10-OAc$ $2.22 s$ 20.7 $CO-10-OAc$ $2^{\prime}-OAc$ $2.15 s$ 20.4 $CO-2^{\prime}-OAc$ $2^{\circ}OBz$ 166.8 q 20.4 $CO-2^{\prime}-OAc$ $2^{\circ}OBz$ 166.8 q $2^{\prime}s, 4^{\prime}-NH^{\prime}$ g^{\prime} $7.60 t$ 7.4 133.5 166.8 q $7.60 t$ 7.4 133.5 166.8 $2^{\prime s}, 4^{\prime}-NH^{\prime m}$ q $7.42 - 7.33$ 126.4	15	-		43.2	1 11 15 16 15	128 178
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	1.23 s		26.7	1, 11, 15, Me-17	13°, 17°
18 1.93 s 14.6 11, 12, 13 $3^{tr}, 10^{\circ}$ 19 1.67 s 9.5 3, 7, 8, 9 $2^{s}, 17^{v}, 20^{s}$ 20a 4.31 d 8.6 76.3 3, 4 200s ^s 20b 4.19 d 8.6 3, 4, 5 2 ^w , 19 ^m , 20a ^s 20b 4.19 d 8.6 20.6 CO-4-OAc 10-OAc 2.44 s 22.6 CO-4-OAc 169.5 10-OAc 2.15 s 20.7 CO-10-OAc 2'-OAc 2.15 s 20.4 CO-2'-OAc 169.6 2-OBz 166.8 169.6 169.6 169.6 169.6 2-OBz 166.8 169.6 169.6 169.6 169.6 2-OBz 166.8 169.6 169.6 169.6 169.6 2-OBz 166.8 11, 12, 13 128.7 169.6 169.6 11 7.7 130.1 Bz-o, p, CO-OBz Bz-m ^s , 20a ^w 167.8 12 5.50 d 3.2 73.8 3', 1', CO-2' -OAc 3's 3' - S.94 dd 9.2, 3.2 52.6 <td< td=""><td>17</td><td>1.13 s</td><td></td><td>22.0</td><td>1, 11, 15, Me-16</td><td>2^s, 16^s, 19^m</td></td<>	17	1.13 s		22.0	1, 11, 15, Me-16	2 ^s , 16 ^s , 19 ^m
19 1.67 s 9.5 3, 7, 8, 9 2°, 17", 20b° 20a 4.31 d 8.6 76.3 3, 4 20b° 20b 4.19 d 8.6 76.3 3, 4 20b° 20b 4.04c 2.44 s 22.6 CO-4-OAc 10-OAc 2.22 s 20.7 CO-10-OAc 2'-OAc 2.15 s 20.7 CO-10-OAc 2'-OAc 2.15 s 20.7 CO-2'-OAc 2OBZ 169.6 2-0Bz 169.6 2OBZ 166.8 20.7 CO-0Bz Bz-m ^s , 20a ^w 7 130.1 Bz-o, p, CO-OBz Bz-m ^s , 20a ^w 10 7.4 133.5 128.6 14.7 10 7.60 t 7.4 133.5 14.7 11' 167.8 2' 5.50 d 3.2 73.8 3', 1', CO-2' -OAc 3's 3'-Ph 136.8 2'm, 3'm, 4'm 21"s, 3'm, 4'm 21"s, 3'm, 4'm 21"s, 3'm, 4'm 9 7.42-7.33 128.7 166.8 2'm, 3'm, 4'm 9 7.42-7.33 128.7 <	18	1.93 s		14.6	11, 12, 13	$3^{\text{m}}, 7^{\text{w}}, 10^{\text{s}}$
20a 4.31 d 8.6 76.3 3, 4 20b' 20b 4.19 d 8.6 3, 4.5 20'', 19'', 20a'' 20b 2.44 s 22.6 CO-4-OAc 4-OAc 2.44 s 22.6 CO-4-OAc 169.5 10-OAc 2.22 s 20.7 CO-10-OAc 2'-OAc 2.15 s 20.4 CO-2'-OAc 2-OBz 169.6 100.6 200.4 CO-2'-OAc 2-OBz 169.6 100.6 100.6 100.6 2-OBz 166.8 100.6 100.6 100.7 200 166.8 100.6 100.7 100.7 1/ 7.7 128.6 126.8 120.4 120.4 1/ 7.60 t 7.4 133.5 126.4 14''''''''''''''''''''''''''''''''''''	19	1.67 s		9.5	3, 7, 8, 9	2 ^s , 17 ^w , 20b ^s
20b 4.19 d 8.6 3, 4, 5 2^n , 19^m , $20a^s$ 4-OAc 2.44 s 22.6 CO-4-OAc 169.5 10-OAc 2.22 s 20.7 CO-10-OAc 2'-OAc 2.15 s 20.4 CO-2'-OAc 169.6 2-OBz 166.8 126.8 0 8.13 d 7.7 130.1 Bz-o, p, CO-OBz Bz-m ^s , 20a ^w CO 166.8 126.8 0 167.8 2' 5.50 d 3.2 73.8 3', 1', CO-2'-OAc 3''s 1' 167.8 167.8 2'' 5.50 d 3.2 73.8 3', 1', CO-2'-OAc 3''s 3' 5.94 dd 9.2, 3.2 52.6 Ph-q, Ph-o, 166.8, 5' 2''s, 4'-NH ^w q 136.8 2' ^m , 3'm, 4' ^m 136.8 2' ^m , 3'm, 4' ^m o 7.42-7.33 126.4 2' ^w , 3' ^w , 6'-Ph-o ^w y-NH 6.86 d 9.2 166.8 2' ^w , 3' ^w , 6'-Ph-o ^w y-CO - 166.8 2' ^w , 3' ^w , 6'-Ph-o ^w y-NH2-q 131.9 126.9 Ph-o, p NH-4' ^s	20a	4.31 d	8.6	76.3	3, 4	20b ³
4-OAc 2.44 s 22.6 CO-4-OAc 169.5 10-OAc 2.22 s 20.4 CO-10-OAc 171.1 2'-OAc 2.15 s 20.4 CO-2'-OAc 169.6 2-OBz CO 166.8 20.4 CO-2'-OAc 169.6 2-OBz CO 166.8 126.8 20.4 CO-2'-OAc 169.6 q 130.1 Bz- o , p , CO-OBz Bz- m^{8} , $20a^{W}$ m 7.51 t 7.7 130.1 Bz- o , p , CO-OBz Bz- m^{8} , $20a^{W}$ m 7.51 t 7.7 128.6 p 7.60 t 7.4 133.5 $1'$ 2'' 5.50 d 3.2 73.8 3', 1', CO-2' -OAc $3'^{8}$ 3' 5.94 dd 9.2, 3.2 52.6 Ph- q , Ph- o , 166.8, 5' $2'^{8}$, $4'$ -NH ^W $3'$ -Ph q 136.8 $2'^{m}$, $3'^{m}$, $4'^{m}$ 7.42-7.33 128.7 p 7.42-7.33 p 7.43-7.34 p 7.43-7.3	20b	4.19 <i>d</i>	8.6		3, 4, 5	2 ^w , 19 ^m , 20a ^s
10-OAc 2.22 s 20.7 CO-10-OAc 2'-OAc 2.15 s 20.4 CO-2'-OAc 2'-OAc 2.15 s 20.4 CO-2'-OAc 2OBz 166.8 126.8 126.8 o 8.13 d 7.7 130.1 Bz- o , p , CO-OBz Bz- m^{s} , 20a ^w m 7.51 t 7.7 128.6 73.8 3', 1', CO-2' -OAc 3' ^s p 7.60 t 7.4 133.5 Ph- q , Ph- o , 166.8, 5' 2' ^s , 4'-NH ^w $3'$ -Ph 166.8 3.2 73.8 3', 1', CO-2' -OAc 3' ^s q 167.8 7.4 136.8 2' ^m , 3' ^m , 4' ^m q 126.4 126.4 140 2' ^m , 3' ^m , 4' ^m q 126.4 128.7 128.3 166.8 2' ^w , 3' ^w , 6'-Ph- o^{w} q 7.42-7.33 128.3 166.8 2' ^w , 3' ^w , 6'-Ph- o^{w} 166.8 2' ^w , 3' ^w , 6'-Ph- o^{w} q 7.3 d 126.9 Ph- o , p NH-4' ^s 126.9 Ph- o , p NH-4' ^s	4-OAc	2.44 s		22.6	CO-4-OAc	
10-OAc 2.22 s 20.7 CO-10-OAc 2'-OAc 2.15 s 20.4 CO-2'-OAc 2-OBz 169.6 169.6 2-OBz 166.8 126.8 o 8.13 d 7.7 130.1 Bz-o, p, CO-OBz m 7.51 t 7.7 128.6 p p 7.60 t 7.4 133.5 Bz-o, p, CO-OBz Bz-m ^s , 20a ^w 1' 167.8 3'. 3', 1', CO-2' -OAc 3's 2' 5.50 d 3.2 73.8 3', 1', CO-2' -OAc 3's 3' 5.94 dd 9.2, 3.2 52.6 Ph-q, Ph-o, 166.8, 5' 2' ^s , 4'-NH ^w q 136.8 2' ^m , 3' ^m , 4' ^m 2' 7.33 128.3 q 7.42-7.33 128.3 166.8 2' ^w , 3' ^w , 6'-Ph-o ^w q 7.73 d 128.3 166.8 2' ^w , 3' ^w , 6'-Ph-o ^w q 7.73 d 126.9 Ph-o, p NH-4 ^{v8}				169.5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10-OAc	$2.22 \ s$		20.7	CO-10-OAc	
$2'-OAc$ $2.15 s$ 20.4 $CO-2'-OAc$ $2-OBz$ 166.8 199.6 CO 166.8 126.8 o 8.13 d 7.7 130.1 Bz- $o, p, CO-OBz$ Bz- $m^s, 20a^w$ m 7.51 t 7.7 128.6 P 7.60 t 7.4 133.5 $1'$ 2' 5.50 d 3.2 73.8 3', 1', CO-2' -OAc 3's $3'$ 5.94 dd 9.2, 3.2 52.6 Ph- $q,$ Ph- $o,$ 166.8, 5' $2'^s, 4'-NH^w$ q 136.8 $2'^m, 3'^m, 4'^m$ q q q q o 7.42-7.33 128.3 126.4 m $7.42-7.33$ 128.3 $4'-NH$ 6.86 d 9.2 166.8 $2'^w, 3'^w, 6'-Ph-o^w$ $5'-CO$ $-$ 166.8 0 0 0 $7.73 d$ 126.9 Ph- o, p $NH-4'^s$				171.1		
2-OBz CO 166.8 q $126.8o 8.13 d 7.7 130.1 Bz-o, p, CO-OBz Bz-m^{s}, 20a^{w}m$ 7.51 t 7.7 $128.6p$ 7.60 t 7.4 $133.51'$ $1'$ $167.82' 5.50 d 3.2 73.8 3', 1', CO-2' - OAc 3'^{s}3' - 5.94 dd 9.2, 3.2 52.6 Ph-q, Ph-o, 166.8, 5' 2'^{s}, 4'-NH^{w}3'-Ph 136.8 2'^{m}, 3'^{m}, 4'^{m}q 136.8 2'^{m}, 3'^{m}, 4'^{m}q$ $7.42-7.33$ $128.7p$ $7.42-7.33$ 128.7 $128.7p 7.42-7.33 128.7 128.7 126.9 Ph-o, p NH-4^{18}$	2'-OAc	2.15 s		20.4	CO-2'-OAc	
2-OBz CO 166.8 q 126.8 o 8.13 d 7.7 m 7.51 t 7.7 p 7.60 t 7.4 130.1 1^{\prime} 167.8 2^{\prime} 5.50 d 3.2 3^{\prime} 5.94 dd 9.2, 3.2 3^{\prime} 5.94 dd 9.2, 3.2 3^{\prime} 5.94 dd 9.2, 3.2 73.8 3^{\prime} , 1^{\prime} , CO-2 $^{\prime}$ -OAc $3^{\prime s}$ $2^{\prime m}$, $3^{\prime m}$, $4^{\prime m}$ $3^{\prime m}$ q 136.8 $2^{\prime m}$, $3^{\prime m}$, $4^{\prime m}$ q 126.4 q 131.9 Q 7.73 d 126.9 Ph- o , p NH-4's				169.6		
CO 166.8 q 126.8 o 8.13 d 7.7 m 7.51 t 7.7 p 7.60 t 7.4 1' 133.5 1' 167.8 2' 5.50 d 3.2 3' 5.94 dd 9.2, 3.2 52.6 Ph- q , Ph- o , 166.8, 5' 2' ^s , 4'-NH ^w 3'-Ph 136.8 2' ^m , 3' ^m , 4' ^m q 7.42-7.33 126.4 m 7.42-7.33 128.7 p 7.42-7.33 128.3 4'-NH 6.86 d 9.2 5'-CO - 166.8 NBz- q 131.9 O 7.73 d 126.9 Ph- o , p NH-4' ^s	2-OBz					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CO			166.8		
o $8.13 d$ 7.7 130.1 $Bz-o, p, CO-OBz$ $Bz-m^s, 20a^w$ m $7.51 t$ 7.7 128.6 $Bz-m^s, 20a^w$ p $7.60 t$ 7.4 133.5 $Bz-m^s, 20a^w$ $1'$ 167.8 $2'$ $5.50 d$ 3.2 73.8 $3', 1', CO-2'$ OAc $3'^s$ $3'$ $5.94 dd$ $9.2, 3.2$ 52.6 $Ph-q, Ph-o, 166.8, 5'$ $2'^s, 4'-NH^w$ $3'-Ph$ q 136.8 $2'^m, 3'^m, 4'^m$ q $7.42-7.33$ 126.4 2^{10} $3'm, 4'^m$ p $7.42-7.33$ 128.7 166.8 $2'^w, 3'^w, 6'-Ph-o^w$ $5'-CO$ $ 166.8$ $2'^w, 3'^w, 6'-Ph-o^w$ $S'-CO$ $ 166.8$ $2'^w, 3'^w, 6'-Ph-o^w$ 0 $7.73 d$ 126.9 $Ph-o, p$ $NH-4'^s$	q			126.8		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	8.13 d	7.7	130.1	Bz-o, p, CO-OBz	$Bz-m^{s}$, $20a^{w}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m	7.51 <i>t</i>	7.7	128.6		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	р	7.60 <i>t</i>	7.4	133.5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1'			167.8		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2'	5.50 d	3.2	73.8	3', 1', CO-2' -OAc	3's
$3'$ -Ph 136.8 $2'^m$, $3'^m$, $4'^m$ o $7.42-7.33$ 126.4 m $7.42-7.33$ 128.7 p $7.42-7.33$ 128.7 $4'$ -NH $6.86 d$ 9.2 166.8 $5'$ -CO - 166.8 NBz-q 131.9 0 O $7.73 d$ 126.9 Ph- o , p NH-4's	3'	5.94 dd	9.2, 3.2	52.6	Ph-q, Ph-o, 166.8, 5'	2' ^s , 4'-NH ^w
q 136.8 $2'^m, 3'^m, 4'^m$ o 7.42-7.33 126.4 m 7.42-7.33 128.7 p 7.42-7.33 128.3 $4'$ -NH 6.86 d 9.2 166.8 $5'$ -CO - 166.8 NBz-q 131.9 O 7.73 d 126.9 Ph- o, p NH-4's	3'-Ph		,		1, , , ,	,
o 7.42-7.33 126.4 m 7.42-7.33 128.7 p 7.42-7.33 128.3 $4'$ -NH 6.86 d 9.2 166.8 $5'$ -CO - 166.8 NBz-q 131.9 O 7.73 d 126.9 Ph- o, p NH-4' ^s	a			136.8		$2^{\prime m}, 3^{\prime m}, 4^{\prime m}$
m 7.42-7.33 128.7 p 7.42-7.33 128.3 4'-NH 6.86 d 9.2 166.8 5'-CO - 166.8 NBz-q 131.9 0 O 7.73 d 126.9 Ph-o. p NH-4's	0	7.42-7.33		126.4		/ - /
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m	7.42-7.33		128.7		
4'-NH 6.86 d 9.2 166.8 2' ^w , 3' ^w , 6'-Ph-o ^w 5'-CO - 166.8 131.9 O 7.73 d 126.9 Ph-o, p NH-4' ^s	n	7.42-7.33		128.3		
5'-CO – 166.8 NBz-q 131.9 O 7.73 d 126.9 Ph-o. p NH-4' ^s	4'-NH	6.86 d	9.2	12010	166.8	2 ^{/w} , 3 ^{/w} , 6 [/] -Ph-0 ^w
NBz-q 131.9 O 7.73 d 126.9 Ph-o. p NH-4' ^s	5'-CO	_		166.8	~ ~ ~ ~	.,_,,,,
O 7.73 d 126.9 Ph-o. p NH-4's	NBz-a			131.9		
	0	7.73 d		126.9	Ph-o, p	NH-4's

Table 2. 1 H- and 13 C NMR data of **2** (500 MHz for 1 H, 125 MHz for 13 C, CDCl₃).

^a Mutiplicity: *s*, singlet; *d*, doublet; *dd*, doublet of doublets; *m*, mutiplet. ^b The ¹³C chemical shifts were extracted from the HMQC experiment (± 0.2 ppm). The values in bold represent quaternary carbons whose chemical shifts were obtained from the HMBC experiment (± 0.2 ppm). ^c NOESY intensities are marked as strong (s), medium (m), or weak (w).

131.9

128.7

fast atom bombardment mass spectra (FAB-MS) were obtained with a Vacuum Generators ZAB-HS. Flash chromatography was performed on Silica gel 60 (230–400 mesh EM Science). Thin layer chromatography (TLC) was conducted on Silica Gel 60 F_{254} pre-coated TLC plates (0.25 mm or 0.5 mm, EM Science). The compounds were visualized on TLC plates with 10% sulfuric acid in ethanol and heating on a hot plate. Na₂SO₄ was the drying

М

р

7.41.m

7.49 m

7.6

435

Q.-W. Shi et al.

agent used in all work-up procedures. Analytical HPLC was performed on a Waters 600 FHU delivery system coupled to a PDA 996 detector. Preparative HPLC were carried out on a Waters Delta Prep 3000 instrument coupled to a UV 486 Tunable Absorbance detector set at 227 nm, 210 nm or 278 nm (Waters). Analytical HPLC was performed with two Whatman partisil 10 ODS-2 analytical columns (4.6×250 mm) in series. Preparative HPLC was performed with one partisil 10 ODS-2 MAG-20 preparative column (22×500 mm). The products were eluted with a 50 min linear gradient of acetonitrile (25 to 100%) in water at a flow rate of 18 ml min⁻¹.

3.2 Plant material

The seeds of *Taxus mairei* were collected in the autumn of 2000 in Hunan Province, the People's Republic of China. Professor Zhao D. made the botanical confirmation. Several voucher specimens have been deposited in our laboratory.

3.3 Extraction and isolation

Air-dried seeds of Taxus mairei (1.4 kg) were ground and extracted with petroleum ether to remove the lipid, and then extracted with methanol five times at room temperature. The combined methanolic extracts were evaporated under reduced pressure. Water (2L) was added and lipids were further removed by stirring the mixture with petroleum ether. The aqueous phase was then salted and extracted with ethyl acetate. The combined ethyl acetate extracts were dried with anhydrous sodium sulfate, filtered and evaporated, yielding a dark extract (25.5 g). Ethyl acetate extract was absorbed onto 25 g silica gel and packed on a wet column chromatography. Successive elution with petroleum ether, gradient petroleum ether-ethyl acetate and gradient petroleum ether-acetone yielded 114 fractions $(Fr_1 - Fr_{114})$. Fr_{32} to Fr_{38} were combined (1.8 g) according to their TLC behaviour, chromatographed over silica gel and eluted with hexane-acetone to yield 20 fractions (Fr₃₂₋₁ to Fr₃₂₋₂₀). The fractions Fr₃₂₋₁₃ to Fr₃₂₋₁₈ (219 mg) were combined and applied to preparative HPLC. The material eluted at $t_R = 42.27$ min was concentrated (25 mg) and further purified by a preparative TLC and developed with $CH_2Cl_2-CNCH_3$ (100:20) to yield 1 (1.5 mg, $R_f = 0.52$). Fr₈₇ to Fr₉₀ were combined (1.0 g) according to their TLC behaviour and chromatographed over silica gel and eluted with hexane-ethyl acetate to provide 18 fractions (Fr_{87-1} to Fr_{87-18}). The fraction Fr_{87-1} was subjected to preparative HPLC to yield 2 (1.0 mg, $t_R = 35.92 \text{ min}$).

3.3.1 2α -Hydroxy-9 α ,10 β ,13 α -triacetoxy-5 α -cinnamoyloxytaxa-11-en-4 β ,20-epoxide (1): Amorphous powder; $[\alpha]_D^{22} + 57$ (*c* 0.10, CHCl₃). ¹H- and ¹³C NMR, HMBC and NOESY spectral data see table 1; HR-FAB-MS *m*/*z* 663.2574 [M + K]⁺ (calculated for C₃₅H₄₄O₁₀K, 663.2571).

3.3.2 $2'\alpha$ -Acetyl taxol (2):. Amorphous powder; $[\alpha]_D^{22} - 35$ (*c* 0.05, MeOH). ¹H- and ¹³C NMR, HMBC and NOESY spectral data see table 2; HR-FAB-MS *m*/*z* 934.3051 [M + K]⁺ (calculated for C₄₉H₅₃NO₁₅K, 934.3052).

New taxanes from Taxus mairei

Acknowledgements

The work described in this paper was co-supported by the Foundation for Researching New Drugs of China (no. 2003AA2Z3527) and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of People's Republic of China.

References

- [1] M.C. Wani, H.L. Taylor, M.E. Wall, P. Coggon, A.T. McPhail. J. Am. Chem. Soc., 93, 2325 (1971).
- [2] D.G.I. Kingston, A.A. Molinero, G.M. Rimoldi. Progress in the Chemistry of Organic Natural Products,
- W. Herz, R.E. Moore, G.W. Kirby, W. Steglich, C. Tamm (Eds.), Vol. 61, pp. 1–206, Springer, Vienna (1993).
 [3] G. Appendino. *The Chemistry and Pharmacology of Taxol and its Derivatives*, V. Farina (Ed.), Vol. 22, pp. 1–102, Elsevier, Amsterdam (1995).
- [4] E. Baloglu, D.G.I. Kingston. J. Nat. Prod., 62, 1448 (1999).
- [5] D.G.I. Kingston, P.G. Jagtap, H. Yuan, L. Samala. Progress in the Chemistry of Organic Natural Products, F.H. Herz, G.W. Kirby (Eds.), Vol. 84, pp. 53–225, Springer, Vienna (2002).
- [6] Q.W. Shi, F. Sauriol, A. Lesimple, L.O. Zamir. J. Chem. Soc. Chem. Commun., 544 (2004).
- [7] J.Y. Liang, Z.D. Min, M. Mizuno, T. Tanaka, M. Inuma. Chem. Pharm. Bull., 35, 1613 (1987).
- [8] J.Y. Liang, Z.D. Min, M. Mizuno, T. Tanaka, M. Inuma. Phytochemistry, 27, 3674 (1988).
- [9] Y.C. Shen, Y.T. Chang, S.S. Wang, Y.C. Lin, C.Y. Chen. Chem. Pharm. Bull., 50, 1561 (2002).
- [10] Y.C. Shen, Y.T. Chang, Y.C. Lin, C.L. Lin, Y.H. Kuo, C.Y. Chen. Chem. Pharm. Bull., 50, 781 (2002) and references cited therein.
- [11] Q.W. Shi, T. Oritani, T. Sugiyama, H. Kiyota. Planta Med., 64, 766 (1998).
- [12] Q.W. Shi, T. Oritani, T. Sugiyama, R. Murakami, H.Q. Wei. J. Nat. Prod., 62, 1114 (1999).
- [13] Q.W. Shi, T. Oritani, T. Sugiyama, R. Murakami, T. Yamada. Phytochemistry, 52, 1571 (1999).
- [14] V.N. Senish, S. Blechert, M. Colin, D. Guenard, F. Picot, P. Potier, P. Varenne. J. Nat. Prod., 47, 131 (1984).
- [15] J. Kobayashi, A. Inubushi, H. Hosoyama, N. Yoshida, T. Sasaki, H. Shigemori. Tetrahedron, 51, 5971 (1995).
- [16] L. Barboni, P. Gariboldi, E. Torregiani, G. Appendino, B. Gabetta, G. Zini, E. Bombardelli. *Phytochemistry*, 33, 145 (1993).
- [17] G. Appendino, G. Cravotto, R. Enriu, D. Garboldi, L. Barboni, E. Torregini, G. Gabetta, G. Zini, E. Bombardelli. J. Nat. Prod., 57, 607 (1994).
- [18] H. Hosoyama, H. Shigemori, Y. In, T. Ishida, J. Kobayashi. Tetrahedron, 54, 2521 (1998).
- [19] L. Ettouati, A. Ahond, O. Convert, C. Poupat, P. Potier. Bull. Soc. Chim. Fr., 5, 687 (1989).
- [20] Q.W. Shi, T. Oritani, T. Horiguchi, T. Sugiyama, R. Murakami, T. Yamada. Biosci. Biotechnol. Biochem., 63, 924 (1999).
- [21] J. Williams, A.I. Scott, R.A. Dieden, C.S. Swindell, L.E. Chirlian, M.M. Francl, J.M. Heerding, N.E. Krauss. *Tetrahedron*, 49, 6545 (1993).
- [22] J. Dubois, D. Guenard, F. Gueritte-Voegelein, N. Guedire, P. Potier, B. Gillet, J.C. Beloeil. *Tetrahedron*, 49, 6533 (1993).

437